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The slip effect on hydromagnetic rotating flow of viscous fluid through a porous space is investigated. 
The fluid is electrically conducting with the consideration of Hall current. The entire system rotates 
about the axis normal to a porous plate of uniform suction or injection with uniform angular velocity. 
The closed form solution is obtained using Laplace transform technique. The analytical expression for 
skin friction is evaluated. The graphical results are displayed to see the effects of various embedded 

flow parameters such as magnetic parameter M , permeability parameter K , Hall parameter m , 

rotation parameter  , suction or injection parameter S , slip parameter   and dimensionless time .  It 

is found that the magnetic field and slip parameter decrease the velocity magnitude whereas 
permeability and Hall parameters increase it. The slip and magnetic field play an important role in 
retarding the growth of both the primary and secondary flows, whereas Hall parameter enhances the 
flow. 
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INTRODUCTION 
 
Although, the rotating flow of viscous fluid is useful, 
familiar and well-studied in the literature (Hayat et al., 
2008a, 2008b, Hayat and Nawaz, 2011a; Asghar et al., 
2007; Turkyilmazoglu, 2009; Abelman et al., 2009; 
Chawla et al., 2009; Singh et al., 2009; Sahoo et al., 
2010; Seth et al., 2010; Jana et al., 2010), yet, the under-
lying physics is surprisingly subtle and complex. The 
behavior of fluids under extreme confinement is of great 
interest from both the scientific and the technological 
points of view. One of the great complexity is to discover 
what type of boundary conditions are appropriate for 
solving the continuum fluid problems. Despite of the 
widespread acceptance of no slip assumption, there has 
been existed for many years, indirect experimental 
evidence based on anomalous flow in capillaries and 
other systems that in some cases, simple liquids can slip 
against solids when walls are sufficiently smooth and the  
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no slip boundary condition is no more valid. The no-slip 
boundary condition is valid only when particles close to a 
surface do not move along with a flow when adhesion is 
stronger than cohesion. However, this is only true 
macroscopically. Few other limitations of no-slip condition 
are: fails for large contact angles, does not hold at a very 
low pressure, does not work for polyethylene, rubber 
compounds and suspensions, fails in hydrodynamics for 
hydrophobic surfaces (Vinogradova, 1995; Zhu and 
Granick, 2002). Recently, the slip condition has become 
much more compelling and it is now reasonably certain 
that viscous fluids can slip against solid surfaces if the 
fluid does not fully wet the solid surface or the solid 
surface is very smooth (Navier, 1823). The slip boundary 
condition has significant applications in lubrication, ex-
trusion, medical sciences, especially in polishing artificial 
heart valves, flows through porous media, micro and 
nanofluidics, friction studies and biological fluids (Blake, 
1990; Pit et al., 1999). 

The influence of a transverse magnetic field and 
radiative heat transfer on the unsteady oscillatory  flow  of  



 
 
 
 
a viscous fluid in a channel filled with porous medium 
was studied by Makinde and Mhone (2005). Mehmood 
and Ali (2007) extended the work of Makinde and Mhone 
(2005) by considering the slip effect at the boundary and 
obtained the analytical results for velocity and 
temperature distributions. Recently, Qasim et al. (2011) 
studied the effects of slip conditions on stretching flow 
with ohmic dissipation and thermal radiation. The 
influence of slip condition on the MHD flow and heat 
transfer over permeable stretching sheet is investigated 
by Hayat et al. (2011b). Hayat et al. (2010a, 2010b) 
analyzed the influence of slip condition on the rotating 
and magnetohydrodynamics (MHD) Couette flow of an 
Oldroyd-B fluid and generalized Burgers' fluid through a 
porous space. Furthermore, the study of MHD flow with 
Hall current has important applications in problems of 
Hall accelerators, flight magnetohydrodynamics, in the 
dynamics of the fluid and the magnetic fields of many 
astrophysical objects. The influence of Hall current on the 
rotating oscillating flows of an Oldroyd-B fluid in a porous 
medium has been studied by Hayat et al. (2007). In few 
other investigations (Katagiri, 1962; Jana et al., 1977; 
Gosh, 1993, 1999) have discussed the MHD flow under 
different physical aspects, whereas, Mandal and Mandal 
(1983) and Jha and Apere (2010) have studied the effect 
of Hall currents under varying conditions. To the best of 
our knowledge, the effect of slip condition with Hall 
current on the magnetohydrodynamic flow of a rotating 
viscous fluid in a porous medium bounded by a porous 
plate has not been discussed in the literature of rotating 
flows. Therefore, this is the basic objective of the present 
article. The problem is first modeled and then solved for 
the closed form solution by using Laplace transform 
technique. 

The expression for velocity field has been obtained in 
term of complementary error function and discussed in 
detail with the help of graphs for various embedded flow 
parameters. The analytical expression for the skin friction 
has been computed from the complex velocity field. 
 
 
MATHEMATICAL FORMULATION OF THE PROBLEM 
 
This analysis considers the unsteady flow of an incompressible 
viscous fluid over an infinitely extended porous plate resting at 

.0z The positive z  axis is taken normal to the plate and 

x  axis parallel to it. The fluid occupies the porous space of z>0 

and is assumed to be electrically conducting under the influence of 
a uniform magnetic field B0 applied in a direction parallel to the 
zaxis. The induced magnetic field is neglected for small magnetic 
Reynolds number while the effect of Hall current is considered. It is 
assumed that the whole system is in the state of rigid body rotation 

normal to a porous plate of uniform suction 00 w  or injection 

00 w  with constant angular velocity k̂  ( k̂  is a unit 

vector in the z  -direction). The plate at 0z  is suddenly 

moved for .0t  Under these assumptions, the flow is governed 

by the following continuity and momentum equations:  
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Where  wvu ,,V  is the velocity vector,   is the fluid 

density,   is the gradient operator, R  is the Darcy's resistance, 

r  is a radial vector with .222 yxr   The Cauchy stress 

tensor T  for an incompressible viscous fluid is given as: 

 

,1AIT  p                             (3) 

 

in which Ip  is the indeterminate spherical stress,   is the 

dynamic viscosity and 1A  is the first Rivilin-Ericken tensor given 

as: 
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Where L  grad V
 
and T indicates the matrix transpose. The 

velocity field is assumed of the following form: 
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Where t
 
is the time, ,u and v  are the velocity components in 

,x
 
and y  directions and 0w  is suction or injection velocity. 

The Darcy's resistance for viscous fluid is given as: 
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in which  10   is the porosity and 0k  is the 

permeability of the porous medium. Taking into account the Hall 
effect and considering the Maxwell's equations: 
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the usual Ohm's law modifies to Gosh (1999): 
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called the generalized Ohm's law. Here, B  is the total magnetic 

field, 0B
 
is the strength of applied magnetic field parallel to z  

axis, J  is the current density, E  is the total electric field, m   

is the magnetic permeability, e  is the cyclotron frequency, e  
is the electron collision time,   is the electrical conductivity of the 

fluid, e  is the electron charge, ep  is the electron pressure and 

en  is the number density of electrons. For weakly ionized gases, 

we neglect Equation 8, the electron pressure gradient, the ion-slip 
and the thermo-electric effects. 



1542          Int. J. Phys. Sci. 
 
 
 

Inserting equation  ,5 , the continuity equation  1  is 

automatically satisfied and the momentum (Equation 2) in view of 
Equations 3, 4, 6 to 8, yields: 
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where ivuF   is the complex fluid velocity and 

,eem   is the Hall parameter. The initial and boundary 

conditions relevant to the problem are: 
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Where   is the slip parameter. 

 

 
 
 
 
We now introduce the following dimensionless variables (Jana et 
al., 2010): 
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and substitute into Equations 9 to 11, the dimensionless equation 
takes the following form: 
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Where the boundary and initial conditions become: 
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SOLUTION OF THE PROBLEM 
 
Taking the Laplace transform of Equation 14, using initial condition 
(Equation 15), we get: 
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The corresponding boundary conditions (Equations 16 and 17) are 
transformed into: 
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Using boundary conditions (Equations 19 and 20), the solution of 

Equation 18 in the transformed  q,  plane is given by: 
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The Laplace inverse of Equation 21 is obtained as follows in 
Equation 22 (Asghar et al., 2007): 
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Where erf  c (  ) denotes the complementary error 

function. 
The dimensionless expression for the skin friction is 

given by: 
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 It is important to note that equation  22  satisfy the imposed 

initial and boundary conditions. Further, if we take 0M  , 

the solutions (Equations 22 and 24) reduce to those obtained by 
Jana et al. (2010), Equations 16 and 17 which provides a useful 
mathematical check. 

 

 
RESULTS AND DISCUSSION 
 
The problem of unsteady rotating hydromagnetic flow 
past a suddenly moved plate in a porous space with slip 
effect and uniform suction or injection has been studied. 
The closed form solution for the complex velocity in terms 
of complementary error function has been obtained by 
using Laplace transform technique. The numerical 
computations   have been carried   out    for    the    non- 
dimensional complex velocity for different values of the 
involved parameters and displayed graphically. The 

effects of magnetic parameter M , permeability 

parameter K , Hall parameter m , rotation parameter  , 

suction or injection parameter S , slip parameter   and 

time   have been observed on complex velocity. The 

behavior of these parameters on the velocity has been 
shown in Figures 1 to 8. From these figures, the real and 
imaginary parts of the complex velocity are shown in 

panels (a ) and (b ) respectively. Figure 1
 
illustrates the 

variations of magnetic parameter M  on the real and 

imaginary parts of velocity. We observed a decrease in 
both real and imaginary parts of the complex velocity as 
well as the boundary layer thickness when the magnetic 

parameter M  is increased. As expected due to the fact 

that the application of transverse magnetic field results to 
a resistive type force (called Lorentz force) similar to drag 

force and upon increasing the values of M , the drag 
force increases which leads to the deceleration of the 

flow. In Figure 2, the profiles of velocity versus   have 

been plotted for various values of permeability parameter 

K
 
by keeping other parameters fixed. Clearly, for  large 



1544          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 1. Profiles of velocity for different values of M  . 

 
 
 

 
 

Figure 2. Profiles of velocity for different values of K  . 

 
 
 

values of ,K both real and imaginary parts of velocity 

and the boundary layer thickness is increasing. However, 
further inspection reveals that increase in boundary layer 
thickness for the imaginary part of velocity is greater 
compared to the real part of velocity. This explains the 

fact that as K  increases; the resistance of the porous 

medium decreases which increases the momentum 
development of the flow regime ultimately increases the 

velocity field. The effect of m  on the complex velocity 

field is shown in Figure 3. We observed that the variation 

of velocity with increasing values of m  is similar to that 

of .K In Figure 4, the velocity profiles for complex 

velocity G  versus  have been plotted for various 

values of rotation parameter   on the complex velocity. 

We observed that the real part of the velocity is 
decreasing whereas the magnitude of imaginary part is 
increasing for large values of . . 

The solid curves in panels a and b represent the fluid 
velocity when there is no rotation. Figures 5 and 6 depict 

the velocity distribution versus span wise coordinate 
. 

For different values of suction or injection parameter S 
respectively. From  Figure  5,  it  is  observed  that,  when 
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Figure 3. Profiles of velocity for different values of m  . 
 
 
 

 
 

Figure 4. Profiles of velocity for different values of   . 

 
 
 

there is no suction ,0S  the fluid velocity is minimum 

and then increasing with increasing values of S.  The 

variation of velocity profiles for the injection case is quite 
opposite to that of suction case as shown in Figure 6. 
Further, Figure 7 illustrates the profiles of the complex 
velocity for various values of the slip parameter . . It is 

interesting to note that when ,0  which corresponds 

to the no slip condition, the value of the real part of 

velocity is 1 while the imaginary part of velocity is 0 . This 

shows a good match with the boundary condition given 
by Equation 16; also it ensures the accuracy of the 

results displayed here. It is further noted that for large 
values of ,  velocity of the real and imaginary parts are 

decreasing. Finally, Figure 8
 

shows variation in the 
velocity profile for different values of dimensionless time 
  for fixed values of other parameters. It is noticed that 

for large values of ,  both the real and imaginary parts of 

velocity are increasing in the vicinity of the plate and then 
decrease smoothly, finally approaches to zero for larger 

values of the span wise coordinate .  Moreover, it is 

further observed that for each value of 
, 

the boundary 

layer thickness for the imaginary part of velocity is greater
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Figure 5. Profiles of velocity for different values of .0S  
 
 
 

 
 

Figure 6. Profiles of velocity for different values of .0S  

 
 
 
than the real part of velocity. 
 
 
CONCLUSIONS 
 
In this paper, we have examined the slip and Hall effects 
on the unsteady hydromagnetic rotating flow of viscous 
fluid past a suddenly moved plate with uniform suction 

0S  or injection .0S The modeling was done in a 

porous space. Employing Laplace transform technique, 
the governing equation was solved for the closed form 
analytical solution in the complex plane. The flow 

characteristics are illustrated using graphs for both real 
and imaginary parts of the complex velocity to see the 
effects of various embedded flow parameters. The 
following conclusions are extracted from this study: 

 
1) The velocity field decreases for larger values of 
magnetic parameter. 
2) An increase in permeability parameter increases the 
fluid velocity. 
3) The velocity increases for higher values of Hall 
parameter. 
4) With increasing values of rotation  parameter,  the  real
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Figure 7. Profiles of velocity for different values of . . 

 
 
 

 
 

Figure 8. Profiles of velocity for different values of   . 

 
 
 
part of velocity is decreasing whereas the magnitude of 
the imaginary part is increasing. 
5) An increase in suction parameter increases the 
complex velocity of the fluid while injection parameter 
decreases it. 
6) When the slip parameter is increased, the velocity field 
is decreased. 

7) The condition for no slip is recovered when 0  . 

8) The complex velocity is an increasing function of time. 
10) In the absence of magnetic field and slip condition, 
the results of Jana et al. (2010) can be obtained as a 
special case. 
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